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magnetic characterization of samples

mechanical characterization of materials (Young’s Modulus, etc.)

integrated characterization of electro-mechanical devices.

main devices:

vectorial vibration sample magnetometer

compression-traction load test system (5kN)

integrated system for the generation of arbitrary magnetic field
(computer controlled)
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Outline
Short introduction to magneto-elastic materials
(Terfenol-D)
A phenomenological approach to magneto-elastic
devices design
Example: a linear actuator
Example: a linear magnetic field sensor
Conclusions and foreseen
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Typical actuators with Terfenol-D
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Typical actuators with Terfenol-D

primary coil

preload screw

load spring

steel enclosure

moving head

Terfenol-D rod
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Terfenol-D properties
www.etrema.com

www.etrema.com

max elongation is 1600µstrain at H = 240kA/m⇒ 1.6mm
deformation for a 1m long rod

non linear, isteretic characteristics: λ = F1(H,σ) e B = F2(H,σ) (σ

is the compressive load)

magneto-elastic (Joule effect), elasto-magnetic coupling (Villari
effect)

BNL, 5 may 2006, Smart actuators/sensors. . . , D.Davino – p. 6/24



Terfenol-D properties
www.etrema.com

max elongation is 1600µstrain at H = 240kA/m⇒ 1.6mm
deformation for a 1m long rod

non linear, isteretic characteristics: λ = F1(H,σ) e B = F2(H,σ) (σ

is the compressive load)

magneto-elastic (Joule effect), elasto-magnetic coupling (Villari
effect)

BNL, 5 may 2006, Smart actuators/sensors. . . , D.Davino – p. 6/24



Terfenol-D properties
www.etrema.com

max elongation is 1600µstrain at H = 240kA/m⇒ 1.6mm
deformation for a 1m long rod

non linear, isteretic characteristics: λ = F1(H,σ) e B = F2(H,σ) (σ

is the compressive load)

magneto-elastic (Joule effect), elasto-magnetic coupling (Villari
effect)

BNL, 5 may 2006, Smart actuators/sensors. . . , D.Davino – p. 6/24



Terfenol-D properties
www.etrema.com

max elongation is 1600µstrain at H = 240kA/m⇒ 1.6mm
deformation for a 1m long rod

non linear, isteretic characteristics: λ = F1(H,σ) e B = F2(H,σ) (σ

is the compressive load)

magneto-elastic (Joule effect), elasto-magnetic coupling (Villari
effect)

BNL, 5 may 2006, Smart actuators/sensors. . . , D.Davino – p. 6/24



Terfenol-D properties
www.etrema.com

max elongation is 1600µstrain at H = 240kA/m⇒ 1.6mm
deformation for a 1m long rod

non linear, isteretic characteristics: λ = F1(H,σ) e B = F2(H,σ) (σ

is the compressive load)

magneto-elastic (Joule effect), elasto-magnetic coupling (Villari
effect) BNL, 5 may 2006, Smart actuators/sensors. . . , D.Davino – p. 6/24



Why smart actuators / sensors ?

force

pos/vel/acc

Smart

Actuator / Sensor

H field

B field

Sensing and actuating capabilities can be combined
in one device
. . . with a smart integration of magneto-elastic
materials properties and feedback techniques
embedded smart controller (microprocessors),
power section on board, etc.
one device can be used for different tasks!
. . . software update
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Applications (present and future)

Micropositioning (SRF, tooling machines, robots,
etc.)
Active vibrations damping, hi-fi (loudspeakers)
Sensing applications (magnetic fields, forces,
deformations, etc.)

But:
How to deal with non-local hysteresis? →
solution: hysteresis compensation⇒ quasi-linear
system
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A model based approach

An algorithm able to represent the hysteresis and,
hopefully, its inverse: the Preisach model

pros: computational effort, identification procedure

cons: just a matematical model, only quasi-static
behavior, zero error only on identification input

D. Davino, C. Natale, S. Pirozzi, C. Visone, A fast compensation algorithm for real-time control of

magnetostrictive actuators, J. Mag. and Mag. Mat., vol. 290-291, (2005)

Other methods: fuzzy, neural networks

pros: adaptiveness, identification noise rejection

cons: implementation and/or computational effort
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A compensated (linear) actuator
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A compensated (linear) actuator

vd PI controller

Microcontroller

sensor

actuator

Comp.

Current
amplifier

λmv0 i0

vs

PCB

Displacement

GMM

vc

16 bit PIC microcontroller (30MFlops, 40MHz clock), four 10bit
A/D converters (0-5V range), one PWM modulator

eddy current prossimity sensor

2A/V gain current amplifier on board (4A max)

20µm max displacement
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Identification
first order reversal curves:
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Experimental results: sinusoid

open loop configuration
identification matrices:
10x10, 20x20 and 50x50
without interpolation
1Hz sinusoid reference
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Experimental results: sinusoid

open loop configuration
identification matrices:
10x10, 20x20 and 50x50
without interpolation
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Experimental results: AM-like signal

closed loop configuration

comp. vs no comp.

10x10 identification
matrix
tracking is good
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Experimental results: AM-like signal

closed loop configuration

comp. vs no comp.

10x10 identification
matrix
compensated case shows
halved error
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A magnetic field sensor proof

Laser
source detect.

Laser

Comp.

opt. fiber

2mm

FBG

magneto-elastic
material

λ
Vd

Vd
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A magnetic field sensor proof

optic Fiber Bragg Gratings (FBG) as strain sensor: ∆λ/λ ∝ ε.

compression test machine as preload

360 coils air solenoid as unknown magnetic field source

4.7mm diameter and 20mm length Terfenol-D rod
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Experiment: identification input

f.o.r. curves
memoryless
characteristic
as reference
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Experiment: identification input

f.o.r. curves
the absolute
error is much
lower on the
identification
input
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Experiment: arbitrary input

arbitrary in-
put
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Experiment: arbitrary input

compensated
case shows
halved error
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Collaborations

Optoelectronic group: C. Ambrosino, S. Campopiano, A. Cusano, A.
Cutolo

Automatic group: C. Natale, S. Pirozzi.

Elettrotechnic group: C. Serpico, M. d’Aquino

V. Basso, M. Pasquale, C. Sasso

A. Adly
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Conclusions
Magneto-elastic materials can be used in actuators
and sensors
A phenomenological model can compensate the
hysteresis⇒ better performance
A linear actuator application has been presented
A linear magnetic field sensor application has been
presented
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Application to SRF

www.energeninc.com

coarse and fine tuning in a single device
no sliding or rotating penetrations through the
vacuum cryostat
zero-power position lock-in

�
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Systems with hysteresis
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Smart materials comparison
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